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● Determine tau/reff for a nocturnal stratocumulus 
case with ship tracks and pockets of open cells 
(DYCOMS II July 11, 2001).

● Use a Bayesian neural network to extract 
information about uncertainties and sensitivities 
using the weight distribution of the trained 
network. (Mackay, 1992, 1995; Aires and Aires 
et al., 2001, 2002, 2004).

Outline/Objectives
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Test Scene: DYCOMS-II RF02, July 11, 2001

● nocturnal flights

● horizontal flight 
circles at cloud top 
and bottom

● five hour time lag 
between satellite 
overpass and in-
situ measurements
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Adiabatic/constant N model compared to DYCOMS sounding
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Lookup Table: MODIS Ch. 20, 31, 32

Cloud top temperature = 285 K,
cloud top pressure = 900 hPa.
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Retrievals: Cloud Top Effective Radius

ship tracks
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Retrievals: Cloud Top Temperature
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Retrievals: Optical Thickness



Standard retrieval:

I Given a forward radiative transfer model y(x) that maps
atmospheric properties

x = {τ, reff , lwp,Tcld , overlying atmosphere ...} (1)

onto radiances (targets) t

t = (I3.7, I11, I12, . . .) = y(x) (2)

I Find cloud properties x∗ for a radiance measurement t∗ that
minimizes a cost function:

E (x) =
d∑

i=1

(y(xi )− ti )
2 . (3)
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Inversion with Neural Networks

(radiances) Cloud properties



Bayesian neural net:

I Given a training dataset D consisting of TOA radiances x and
cloud targets t = {τ, reff ,Tcld}, find the underlying generator
for the LUT, y , by choosing a set of network weights w that
map x to t:

yk = g̃

 M∑
j=0

w
(2)
j ,k × g

(
d∑

i=0

w
(1)
i ,j xi

) . (4)

I The set of optimal weights, w∗, is the one that minimizes the
cost function.

E =
1

2

N∑
n=1

{y(xn;w)− tn}2 . (5)
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What about Bayes?

I There’s no guarantee that the optimal set of weights w∗ is the
one that gives the best physical representation of the
generator y . There is some probability distribution for the
weights given the training set, given by Bayes theorem:

p(w|D) =
p(D|w) p(w)

p(D)
. (6)

which can be reduced to the product of two Gaussians:

p(w|D) ∝ exp (−εD(w)− εW (w)) , (7)

where εD and εW are data and weights error functions.
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Distribution of W11 for long and short training times



The Hessian and the Jacobian

I Working with p(w|D): where do we get this PDF?

I Second order Taylor series expansion:

ε(w) = ε(w∗) + bT ·∆w +
1

2
∆wT · H̃ ·∆w,

where ∆w = w −w∗. b denotes the gradient of E at w∗,

b = ∇ε(w)|w=w∗ = 0,

and the Hessian is given by

H̃ = ∇∇ε(w)|w=w∗

so that

p(w|D) =
1

Z
exp

(
−1

2
∆wT · H̃ ·∆w

)
.
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Distribution of the Jacobian
for the July 11 scene

3.7um

11-12 um

reff Tcld tau

12 um

Tsfc
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Spatial Distribution of Jacobian

smaller droplets, lower sensitivity

larger droplets,
higher sensitivity
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Network Architecture
● Jacobian point estimate – compare dependences with “known” values

● Example: brightness temperatures or brightness temperature differences 
as inputs?

≈ 2.5 μm / K
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Scene Jacobian

● Use mean Jacobian to estimate

1)   average dependences
2)  ill-conditioning of the problem
3)  sensitivities to inputs
4)  importance of inputs
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normalised mean Jacobian – importance of inputs
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Summary
● Neural net able to retrieve reff, Tcld, tau for 

nocturnal stratocumulus case
● Bayesian approach uses the Hessian of the 

error function to estimate weight distribution, 
distribution of the network sensitivities 
(Jacobian)

● More work to do on generating a robust network 
(network ensembles), improving the retrieval via 
 the prior weight distribution, tracking diurnal 
changes.
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