Overview of Canada’s Action Plan on Aviation Emissions and Alternative Fuels

Ted McDonald
Senior Environmental Protection Specialist (Aviation)
Transport Canada, Civil Aviation
NASA ACCESS II Data Workshop, 09 January 2014
Purpose

• Outline Canada’s roles, responsibilities and activities related to aviation emissions and alternative fuels.
Canadian and US Federal Organizations
Transport Canada’s Responsibilities

• Ensures a safe, secure, efficient and environmentally responsible Canadian transportation system
 – Assess safety, security and economic implications in proposed environmental measures

• Regulates all emissions from the aviation, marine and rail sectors – leads Canadian participation and involvement at the International Civil Aviation Organization (ICAO) and the International Maritime Organization (IMO)

• Removes barriers to enable take-up of clean technologies – e.g., modernized and harmonized codes, standards, test protocols, targeted incentives, research
The Current Approach

The Government of Canada promotes clean transportation by:

1. **Creating and implementing regulatory regimes:**
 - In consultation with our partners, such as the International Maritime Organization (IMO) and the International Civil Aviation Organization (ICAO), and aligned with the U.S., where appropriate;
 - Sector-by-sector approach.

2. **Implementing complementary measures to support the uptake of clean transportation technologies and innovative practices:**
 - Voluntary agreements with industry;
 - Programs that provide economic incentives to support deployment;
 - Research and information on new technologies.
Common Objectives

• Environmental goals include reducing or minimizing:
 – aircraft noise
 – impacts on air quality
 – impacts on the global climate

• R&D is a key component
 – Improved measurement / understanding
 – Clean technology
 – Efficient operations
Aviation Environmental Impacts

Noise Impacts

Air Quality Impacts

Climate Impacts

Other Impacts
What’s Missing?

Natural Greenhouse Effect

- More heat escapes into space
- Solar Radiation
- Greenhouse Gases (CO₂, CH₄, N₂O)
- Atmosphere

Human Enhanced Greenhouse Effect

- Less heat escapes into space
- Solar Radiation
- More re-emitted heat
- Re-radiated Heat
- CO₂
- CH₄, N₂O
- More Greenhouse Gases
Aviation Environmental Impacts

- CO, HC, NO, SO, Primary PM_{2.5}: < 1%
- CO₂: 71%
- Water: 28%

Combustion Emissions

Atmospheric Chemistry and Physics

- Soot
- SO_x
- NO_x
- O₃
- CH₄
- H₂O
- CO
- CH₄, N₂O, CO₂

Global Climate Change

- Cooling Effects
- Warming Effects

Aircraft Noise

Population Exposure and Health Impacts

Land and Water Usage

Emissions from Fuel Production
Aircraft Condensation Trails
“Contrails”
Why Study Aircraft Engine Emissions and Contrails?

- Public concern
- Emissions deposited at cruise altitudes
- Climate impacts
 - Significance of H₂O
 - Role of particulate matter (including Black Carbon)
 - Impacts from alternative fuels
Canada’s Airspace

- World’s second-largest ANSP (by traffic volume)
- 12 million aircraft movements a year
- 18 million square kilometres (domestic airspace and out to centre of the North Atlantic… > 1,200 flights/day)
- Areas of significant importance for contrails
Canada’s Action Plan to Reduce GHG Emissions from Aviation

Goals:
- 2% fuel efficiency/year from 2005 to 2020
- Carbon neutral growth from 2020
- Absolute 50% GHG reductions by 2050

Measures:
- Fleet renewal
- Improved ATM
- Alternative aviation fuels
Canadian Aviation Environmental Research Priority Areas and Efforts

1. Aviation Impacts on the Global Climate
 - Aviation Emissions Impacts in the Arctic (York U/EC/FAA)
 - New ICAO aircraft CO2 standard (ASCENT)

2. Aviation Impacts on Air Quality
 - Cdn measurement technology (LII 300) and real-time calibration technology for new ICAO nvPM standard and methodology (NRC/GARDN/ASCENT)
 *also important for climate impacts

3. Aviation Alternative Fuels
 - ICAO Alternative Fuels Task Force
 - Fuel, engine and flight testing (GARDN/NRC/EC)
 - NASA ACCESS II (NRC/NASA/FAA)
 - Cdn biojet value chain assessment (BFN/ASCENT)
Canadian Research – Measurement & Testing
Canadian Research – Modelling
Canadian Research – Alternative Fuels

BioFuelNet Canada

Public-Private Network
• brings together the Cdn biofuels research community to address key challenges

Task Force 6: Aviation (*new)
• involve researchers in feedstock, conversion, engine operations, policy, LCA, economics and supply chain.

Need estimated at 200 - 250 million litres by 2020
Next Steps – Continued Collaborations with Key Partners