Skip to main content

NAAMES Publications

NAAMES Running Publication List (arranged alphabetically by year)

Each link given below will open its target document/page in a new window.

Submitted / In Review

Knowles, B., Distinguishing density vs physiology-dependent death and growth processes using a miniaturized dilution assay, Nature Comm.

Mojica, K., Estimates of mixing and mixed layer depth in the Western North Atlantic, Journal of Marine Science.

Mojica, K., et al., Spring accumulation rates in North Atlantic phytoplankton communities linked to the alterations in the balance between division and loss, ISME.

Moore, E., Metabolism of key atmospheric volatile organic compounds by the marine heterotrophic bacterium Pelagibacter HTCC1062 (SAR11), Environ. Microbiol.

Penta, W., Fox, J., and Halsey, K.H., Rapid photoacclimation during episodic deep mixing augments the biological carbon pump, Limnology and Oceanography

Tanigutchi, D., A modeling approach to determine how prey size choice reveals an emergent keystone predator effect in planktonic communities, Marine Ecology Progress Series


2021

Arteaga, L., E. Boss, M. J. Behrenfeld, T. K. Westberry, and J. L. Sarmiento, Seasonal modulation of phytoplankton biomass in the Southern Ocean, Nature Comm., https://doi.org/10.1038/s41467-020-19157-2.

Behrenfeld,M. J. et al., Thoughts on the evolution and ecological niche of diatoms, Ecological Monographs, https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/ecm.1457.

Behrenfeld, M. J., E. S. Boss, and K. H. Halsey, Phytoplankton community structuring and succession in a competition-neutral resource landscape, ISME Comm., https://www.nature.com/articles/s43705-021-00011-5.

Bell, T., et al., Predictability of Seawater DMS During the North Atlantic Aerosol and Marine Ecosystem Study (NAAMES), Front. Mar. Sci, https://doi.org/10.3389/fmars.2020.596763.

Bolanos, L., et al., Seasonality of the Microbial Community Composition in the North Atlantic, Front. Mar. Sci., https://www.frontiersin.org/articles/10.3389/fmars.2021.624164/full.

Davie-Martin, C., et al., Seasonal and Spatial Variability in the Biogenic Production and Consumption of Volatile Organic Compounds (VOCs) by Marine Plankton in the North Atlantic Ocean, Front. Mar. Sci., https://www.frontiersin.org/articles/10.3389/fmars.2020.611870/full.

Eveleth, R., et al., Assessing the skill of a high-resolution marine biophysical model using geostatistical analysis of mesoscale ocean chlorophyll variability from field observations and satellite remote sensing, Front. Mar. Sci., https://www.frontiersin.org/articles/10.3389/fmars.2021.612764/full.

Hendrickson, B. N., et al, Role of Sea Surface Microlayer Properties in Cloud Formation, Front. Mar. Sci., https://www.frontiersin.org/articles/10.3389/fmars.2020.596225/full.

Yang, B., et al., In-situ estimates of net primary production in the Western North Atlantic with Argo profiling floats, Journal of Geophysical Research Biogeosciences, https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020JG006116.


2020

Allen, J. G., et al., Controls on Ocean Color Spectra Observed During the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES), Front. Mar. Sci., https://www.frontiersin.org/articles/10.3389/fmars.2020.567007/full.

Baetge, N, Graff, JR, Behrenfeld, MJ, Carlson, CA, (2020) Net Community Production, Dissolved Organic Carbon Accumulation and Vertical Export in the Western North Atlantic, Front. Mar. Sci., https://doi.org/10.3389/fmars.2020.00227.

Bates, T. S., et al., Variability in Marine Plankton Ecosystems are not Observed in Freshly Emitted Sea Spray Aerosol over the North Atlantic Ocean, Geophys. Res. Lett., https://doi.org/10.1029/2019GL085938.

Bolaños, L.M., Karp-Boss, L., Choi, C.J. et al. Small phytoplankton dominate western North Atlantic biomass. ISME J (2020) https://doi.org/10.1038/s41396-020-0636-0.

Chase, A., et al., Evaluation of diagnostic pigments to estimate phytoplankton size classes, Limnology and Oceanography Methods, https://aslopubs.onlinelibrary.wiley.com/doi/full/10.1002/lom3.10385.

Della Penna, A. and P. Gaube, Mesoscale Eddies Structure Mesopelagic Communities. Front. Mar. Sci., https://doi.org/10.3389/fmars.2020.00454.

Fox, J. et al., Phytoplankton Growth and Productivity in the Western North Atlantic: Observations of Regional Variability From the NAAMES Field Campaigns, Front. Mar. Sci. https://www.frontiersin.org/articles/10.3389/fmars.2020.00024/full.

Franzè G, Menden-Deuer S, Common temperature-growth dependency and acclimation response in three herbivorous protists. Mar Ecol Prog Ser 634:1-13. https://doi.org/10.3389/fmars.2020.00024

Haentjens, N., et al., Detecting Mesopleagic Organisms Using Biogeochemical-Argo Floats, Geophys. Res. Lett., https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019GL086088.

Knowles, B., et al., Temperate infection in a virus-host system previously known for virulent dynamics, Nature Communications, https://www.nature.com/articles/s41467-020-18078-4.

Kramer, S, Seigel, DA, Graff, JR, Phytoplankton community composition determined from co-variability among phytoplankton pigments from the NAAMES field campaign, Front. in Mar. Sci., https://doi.org/10.3389/fmars.2020.00215

Lawler, M.J. et al. (2020) “North Atlantic marine organic aerosol characterized by novel offline thermal desorption mass spectrometry approach: polysaccharides, recalcitrant material, secondary organics,” Atmospheric Chemistry and Physics Disc., doi: 10.5194/acp-2020-562

Menden-Deuer S, et al., Multi-Instrument Assessment of Phytoplankton Abundance and Cell Sizes in Mono-Specific Laboratory Cultures and Whole Plankton Community Composition in the North Atlantic, Front. Mar. Sci., https://doi.org/10.3389/fmars.2020.00254.

Mojica, K. D. and C. P. Brussaard, Significance of Viral Activity for Regulating Heterotrophic Prokaryote Community Dynamics along a Meridional Gradient of Stratification in the Northeast Atlantic Ocean, Viruses, https://pubmed.ncbi.nlm.nih.gov/33198110/.

Morison F. , G. Franzè, E. Harvey, S. Menden-Deuer, Light fluctuations are key in modulating plankton trophic dynamics and their impact on primary production, L&O Letters, https://doi.org/10.1002/lol2.10156.

Morison, F., Mesozooplankton grazing minimally impacts phytoplankton abundance during spring in the western North Atlantic, PeerJ, https://peerj.com/articles/9430/..

Quinn, P. K., Bates, T. S., Coffman, D. J., Upchurch, L., Johnson, J. E., Moore, R., et al. (2019). Seasonal variations in western North Atlantic remote marine aerosol properties. Journal of Geophysical Research: Atmospheres, 10.1029/2019JD031740

Saliba, G., et al., Seasonal Differences and Variability of Concentrations, Chemical Composition, and Cloud Condensation Nuclei of Marine Aerosol Over the North Atlantic, J. Geophys. Res. – Atmos., https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020JD033145

Schiller, S., Flugzeuggestützte Messung flüchtiger organischer Verbindungen über dem Nordatlantik mittels PTR-ToF-MS (Airborne measurements of volatile organic compounds over the North Atlantic by PTR-ToF-MS), Master’s Thesis

Schulien, J, et al., Shifts in Phytoplankton Community Structure Across an Anticyclonic Eddy Revealed from High Spectral Resolution Lidar Scattering Measurements, Front. Mar. Sci., https://www.frontiersin.org/articles/10.3389/fmars.2020.00493/full.

Sinclair, K., van Diedenhoven, B., Cairns, B., Alexandrov, M., Moore, R., Ziemba, L. D., & Crosbie, E. (2020). Observations of aerosol‐cloud interactions during the North Atlantic aerosol and marine ecosystem study. Geophysical Research Letters, 47, e2019GL085851, https://doi.org/10.1029/2019GL085851

Strock, J. S. and S. Menden-Deuer, Temperature acclimation alters phytoplankton growth and production rates, Limnology and Oceanography, https://aslopubs.onlinelibrary.wiley.com/doi/abs/10.1002/lno.11637.

Suffridge, C. P., L. Bolanos, K. Bergauer, A. Worden, J. Morre, M. J. Behrenfeld, and S. J. Giovannoni, Exploring Vitamin B1 cycling and Its Connections to the Microbial Community in the North Atlantic Ocean, Front. Mar. Sci., https://www.frontiersin.org/articles/10.3389/fmars.2020.606342/full.

Wang, W.-L., et al., Global ocean dimethyl sulfide climatology estimated from observations and an artificial neural network, Biogeosciences, https://bg.copernicus.org/articles/17/5335/2020/bg-17-5335-2020-discussion.html

Wilbourn, E. K., Thornton, D. C. O., Ott, C., Graff, J., Quinn, P. K., Bates, T. S., et al. (2020). Ice nucleation by marine aerosols over the North Atlantic Ocean in late spring. Journal of Geophysical Research: Atmospheres, 125, e2019JD030913. https://doi.org/10.1029/2019JD030913

Yang B, Boss ES, Haëntjens N, Long MC, Behrenfeld MJ, Eveleth R and Doney SC (2020) Phytoplankton Phenology in the North Atlantic: Insights From Profiling Float Measurements. Front. Mar. Sci. 7:139. doi: https://doi.org/10.3389/fmars.2020.00139


2019

Archibald, K., Siegel, D. A., & Doney, S. C. (2019). “Modeling the impact of zooplankton diel vertical migration on the carbon export flux of the biological pump.” Global Biogeochemical Cycles, 33. https://doi.org/10.1029/2018GB005983

Behrenfeld, M., Advancing Satellite Technology to Monitor Ocean Phytoplankton, Scientia, https://doi.org/10.33548/SCIENTIA382, 10 Jul 2019.

Behrenfeld, M. et al. (2019) The North Atlantic Aerosol and Marine Ecosystem Study (NAAMES): Science motive and mission overview. Frontiers in Marine Science, 6:122. doi: 10.3389/fmars.2019.00122, https://doi.org/10.3389/fmars.2019.00122 .

Behrenfeld, M.J., Gaube, P., et al. Global satellite observations of vertically migrating animals in the ocean’s surface layer, Nature (2019) doi:10.1038/s41586-019-1796-9.

Bisson, K. M., E. Boss, T. K. Westberry, and M. J. Behrenfeld (2019) Evaluating satellite estimates of particulate backscatter in the global open ocean using autonomous profiling floats: Optics Express, 27, https://doi.org/10.1364/OE.27.030191.

Cavicchioli, R., Ripple, W.J., Timmis, K.N. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol 17, 569–586 (2019). https://doi.org/10.1038/s41579-019-0222-5

Della Penna A and Gaube P (2019) Overview of (Sub)mesoscale Ocean Dynamics for the NAAMES Field Program. Front. Mar. Sci. 6:384. doi: 10.3389/fmars.2019.0038, https://doi.org/10.3389/fmars.2019.00384

Gaube, P., Chickadel, C. C., Branch, R., & Jessup, A. (2019). Satellite observations of SST-induced wind speed perturbation at the oceanic submesoscale. Geophysical Research Letters, 46, 2690 and 2695. https://doi.org/10.1029/2018GL080807

Giovannoni SJ, Halsey KH, Saw J, Muslin O, Suffridge CP, Sun J, Lee C-P, Moore ER, Temperton B, Noell SE. 2019. A parasitic arsenic cycle that shuttles energy from phytoplankton to heterotrophic bacterioplankton. mBio 10:e00246-19. https://doi.org/10.1128/mBio.00246-19.

Jamet, C, et al., Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry, Frontiers in Marine Science, 21 May 2019, https://doi.org/10.3389/fmars.2019.00251

Kramer, S. and D. A. Siegel, “How can phytoplankton pigments be best used to characterize surface ocean phytoplankton groups for ocean color remote sensing algorithms?” Journal of Geophysical Research: Oceans, https://doi.org/10.1029/2019JC015604.

Mojica, K.D.A., Carlson, C.A. & Behrenfeld, M.J. Regulation of Low and High Nucleic Acid Fluorescent Heterotrophic Prokaryote Subpopulations and Links to Viral-Induced Mortality Within Natural Prokaryote-Virus Communities. Microb Ecol (2019). https://doi.org/10.1007/s00248-019-01393-9

Moore, E. R., C. L. Davie-Martin, S. J. Giovannoni, and K. H. Halsey, Pelagibacter metabolism of diatom-derived volatile organic compounds imposes an energetic tax on photosynthetic carbon fixation. Environmental Microbiology, doi:10.1111/1462-2920.14861

Morison, F. et al. (2019) Storm-Induced Predator-Prey Decoupling Promotes Springtime Accumulation of North Atlantic Phytoplankton: Frontiers in Marine Science, https://doi.org/10.3389/fmars.2019.00608.

Osman, M., et al. 2019, Industrial-era decline in subarctic Atlantic productivity, Nature, https://doi.org/10.1038/s41586-019-1181-8.

Roohani, K. et al., Trophic upgrading and mobilization of wax esters in microzooplankton, PeerJ, doi:10.7717/peerj.7549.

Saliba, G. et al., Factors Driving the Seasonal and Hourly Variability of Sea-Spray Aerosol Number in the North Atlantic, Proceedings of the National Academy of Sciences Journal, https://doi.org/10.1073/pnas.1907574116.

Sinclair, K., B. van Diedenhoven, B. Cairns, M. Alexandrov, R. Moore, E. Crosbie, and L. Ziemba, 2019: Polarimetric retrievals of cloud droplet number concentrations. Remote Sens. Environ., 228, 227-240, doi:10.1016/j.rse.2019.04.008.

Xing, X.-G. et al., Toward deeper development of Biogeochemical-Argo floats, Atmos. Oceanic Sci. Lett., https://doi.org/10.1080/16742834.2018.1457932.


2018

Alexandrov, Mikhail D., Brian Cairns, Kenneth Sinclair, Andrzej P. Wasilewski, Luke Ziemba, Ewan Crosbie, Richard Moore, John Hair, Amy Jo Scarino, Yongxiang Hu, Snorre Stamnes, Michael A. Shook, Gao Chen (2018). “Retrievals of cloud droplet size from the research scanning polarimeter data: Validation using in situ measurements”, Remote Sensing of Environment, 210, 76-95. https://doi.org/10.1016/j.rse.2018.03.005

Balaguru, Karthik, Scott C. Doney, Laura Bianucci, Philip J. Rasch, L. Ruby Leung, Jin-Ho Yoon, Ivan D. Lima (2018) “Linking deep convection and phytoplankton blooms in the northern Labrador Sea in a changing climate”, PLoS ONE, 13(1), e0191509. https://doi.org/10.1371/journal.pone.0191509

Behrenfeld Michael J. and Emmanuel S. Boss (2018) “Student’s tutorial on bloom hypotheses in the context of phytoplankton annual cycles”, Global Change Biology, 24:55 and 77. https://doi.org/10.1111/gcb.13858

Boss, Emmanuel, Nils Haëntjens, Toby K. Westberry, Lee Karp-Boss, and Wayne H. Slade (2018). “Validation of the particle size distribution obtained with the laser in-situ scattering and transmission (LISST) meter in flow-through mode.” Optics Express, 26(9), 11125-11136. https://doi.org/10.1364/OE.26.011125

Crosbie, E., et al. Development and characterization of a high-efficiency, aircraft-based axial cyclone cloud water collector, Atmos. Meas. Tech., 11, 5025-5048, https://doi.org/10.5194/amt-11-5025-2018, 2018.

Fassbender, A. J., A. Bourbonnais, S. Clayton, P. Gaube, M. Omand, P. J. S. Franks, M. A. Altabet, and D. J. McGillicuddy Jr. (2018), Interpreting mosaics of ocean biogeochemistry, Eos, 99, https://doi.org/10.1029/2018EO109707. Published on 17 December 2018.

Gaube, P., et al. (2018) “Mesoscale eddies influence the movements of mature female white sharks in the Gulf Stream and Sargasso Sea”, Scientific Reports, https://doi.org/10.1038/s41598-018-25565-8

Gaube, P., McGillicuddy, D.J., Moulin, A.J., Mesoscale Eddies Modulate Mixed Layer Depth Globally. Geophysical Research Letters, 2018. https://doi.org/10.1029/2018GL080006

Glover, David M., Scott C. Doney, William K. Oestreich, and Alisdair W. Tullo (2018). “Geostatistical analysis of mesoscale spatial variability and error in SeaWiFS and MODIS/Aqua global ocean color data”, Journal of Geophysical Research: Oceans, 123. https://doi.org/10.1002/2017JC013023

Graff Jason R. and Michael J. Behrenfeld (2018) Photoacclimation Responses in Subarctic Atlantic Phytoplankton Following a Natural Mixing-Restratification Event.” Frontiers in Marine Science, 5, https://doi.org/10.3389/fmars.2018.00209

Hostetler, Chris A., Michael J. Behrenfeld, Yongxiang Hu, Johnathan W. Hair, and Jennifer A. Schulien (2018) “Spaceborne Lidar in the Study of Marine Systems”, Annual Review of Marine Science, 10:121-147. https://doi.org/10.1146/annurev-marine-121916-063335

Menden-Deuer, S., J. Rowlett (2018). “The theory of games and microbe ecology.” Theoretical Ecology. https://doi.org/10.1007/s12080-018-0384-1

Neukermans, G, et al. (2018). Harnessing remote sensing to address critical science questions on ocean-atmosphere interactions. Elem Sci Anth, 6: 71. doi: https://doi.org/10.1525/elementa.331

Sanchez, Kevin J., Chia-Li Chen, Lynn M. Russell, Raghu Betha, Jun Liu, Derek J. Price, Paola Massoli, Luke D. Ziemba, Ewan C. Crosbie, Richard H. Moore, Markus Müller, Sven A. Schiller, Armin Wisthaler, Alex K. Y. Lee, Patricia K. Quinn, Timothy S. Bates, Jack Porter, Thomas G. Bell, Eric S. Saltzman, Robert D. Vaillancourt, and Mike J. Behrenfeld (2018) “Substantial Seasonal Contribution of Observed Biogenic Sulfate Particles to Cloud Condensation Nuclei”, Nature Scientific Reports, v8, n3235. https://doi.org/10.1038/s41598-018-21590-9

Zhang, Minwei, Chuanmin Hu, Jennifer Cannizzaro, Matthew G. Kowalewski, and Scott J. Janz (2018) “Diurnal changes of remote sensing reflectance over Chesapeake Bay: Observations from the Airborne Compact Atmospheric Mapper”, Estuarine and Coastal Marine Science 200: 181-193. https://doi.org/10.1016/j.ecss.2017.10.021


2017

Morison, F. and S. Menden-Deuer (2017). “Doing more with less? Balancing sampling resolution and effort in measurements of protistan growth and grazing-rates.” Limnology and Oceanography: Methods, doi: 10.1002/lom3.10200

Jones, Bethan M., Kimberly H. Halsey, and Michael J. Behrenfeld (2017) “Novel incubation-free approaches to determine phytoplankton net primary productivity, growth, and biomass based on flow cytometry and quantification of ATP and NAD(H)”, Limnology and Oceanography: Methods, 15: 928-938. https://doi.org/10.1002/lom3.10213

Quinn, P. K., D. J. Coffman, J. E. Johnson, L. M. Upchurch, and T. S. Bates (2017) “Small Fraction of Marine Cloud Condensation Nuclei Made Up Of Sea Spray Aerosol”, Nature Geosciences, 10: 674-679. https://doi.org/10.1038/ngeo3003

Zhang, Minwei, Chuanmin Hu, Matthew G. Kowalewski, and Scott J. Janz (2017) “Atmospheric Correction of Hyperspectral GCAS Airborne Measurements Over the North Atlantic Ocean and Louisiana Shelf”, IEEE Transactions on Geoscience and Remote Sensing, 56 (1): 168-179. https://doi.org/10.1109/TGRS.2017.2744323

Zhang, Minwei, Chuanmin Hu, Matthew G. Kowalewski, Scott J. Janz, Zhongping Lee, and Jianwei Wei (2017) “Atmospheric correction of hyperspectral airborne GCAS measurements over the Louisiana Shelf using a cloud shadow approach”, International Journal of Remote Sensing, 38(4): 1162-1179. https://doi.org/10.1080/01431161.2017.1280633


2016

Anderson, S.R. and S. Menden-Deuer (2016). “Growth, Grazing, and Starvation Survival in Three Heterotrophic Dinoflagellate Species”, The Journal of Eukaryotic Microbiology. doi:10.1111/jeu.12353

Behrenfeld, Michael J., Yongxiang Hu, Robert T. O’Malley, Emmanuel S. Boss, Chris A. Hostetler, David A. Siegel, Jorge L. Sarmiento, Jennifer Schulien, Johnathan W. Hair, Xiaomei Lu, Sharon Rodier, and Amy Jo Scarino (2016) “Annual boom and bust cycles of polar phytoplankton biomass revealed by space-based lidar”, Nature Geoscience, https://doi.org/10.1038/ngeo2861

Sun, Jing, Jonathan D. Todd, J. Cameron Thrash, Yanping Qian, Michael C. Qian, Ben Temperton, Jiazhen Guo, Emily K. Fowler, Joshua T. Aldrich, Carrie D. Nicora, Mary S. Lipton, Richard D. Smith, Patrick De Leenheer, Samuel H. Payne, Andrew W.B. Johnston, Cleo L. Davie-Martin, Kimberly H. Halsey, and Stephen J. Giovannoni (2016). “The abundant marine bacterium Pelagibacter simultaneously catabolizes dimethylsulfoniopropionate to the gases dimethyl sulfide and methanethiol”, Nature Microbiology 1: 16065. https://doi.org/10.1038/nmicrobiol.2016.65

  • Virginia DEQ, NASA and Penn State-NATIVE Enclosures (from right to left)
    Virginia DEQ, NASA and Penn State-NATIVE Enclosures (from right to left)

  • Ozone-sonde away.
    Ozone-sonde away.
  • About to lift.
    About to lift.
PurpleAir PA-II-SD Air Quality Sensor
Laser Particle Counters
Type (2) PMS5003
Range of measurement 0.3, 0.5, 1.0, 2.5, 5.0, & 10 μm
Counting efficiency 50% at 0.3μm & 98% at ≥0.5μm
Effective range
(PM2.5 standard)*
0 to 500 μg/m³
Maximum range (PM2.5 standard)* ≥1000 μg/m³
Maximum consistency error (PM2.5 standard) ±10% at 100 to 500μg/m³ & ±10μg/m³ at 0 to 100μg/m³
Standard Volume 0.1 Litre
Single response time ≤1 second
Total response time ≤10 seconds
Pressure, Temperature, & Humidity Sensor
Type BME280
Temperature range -40°F to 185°F (-40°C to 85°C)
Pressure range 300 to 1100 hPa
Humidity Response time (τ63%): 1 s
Accuracy tolerance: ±3% RH
Hysteresis: ≤2% RH


Pandora capabilities

Instrument

Response

Parameter

Precision

Uncertainty

Range

Resolution

Pandora

~2min

Total Column O3, NO2, HCHO, SO2, H2O, BrO

0.01 DU

0.1 DU

 

 

Virginia Department of Environment Quality in-situ instrumentation

Instrument

Response

Parameter

Precision

Uncertainty

Thermo Scientific 42C (Molybdenum converter)
(VADEQ)

60 s

NO and NOx

50 pptv

3%

Teledyne API 200EU w/ photolytic converter
(EPA) PI-Szykman

20 s

NO2

50 pptv

 

Thermo Scientific 49C (VADEQ)

20 s

O3

1 ppbv

4%

Thermo Scientific 48i (VADEQ)

60 s

CO

40 ppbv

5%

Thermo Scientific 43i (VADEQ)

80 s

SO2

0.2 ppbv

5%

Thermo Scientific 1400AB TEOM (VADEQ)

600 s

PM2.5 (continuous)

µg/m3

1 3%

Thermo Scientific Partisol Plus 2025 (VADEQ)

24 hr

PM2.5 (filter-based FRM)- 1/3 days

 

 

BSRN-LRC-49
Large area view.
Latitude: 37.1038
Longitude: -76.3872
Elevation: 3 m Above sea level
Scenes: urban, marsh, bay, river and farm.

Legend

  • The inner red circle is a 20km CERES foot print centered on the BSRN-LRC site.
  • The pink circle represents a possible tangential 20km foot print.
  • The middle red circle represents the area in which a 20km foot print could fall and still see the site.
  • Yellow is a sample 40 deg off nadir foot print.
  • The outer red circle is the region which would be seen by a possible 40 deg off nadir foot print.
The BSRN-LRC sun tracker at the NASA Langley Research Center on a snowy day (02/20/2015) The BSRN-LRC sun tracker at the NASA Langley Research Center on a snowy day (02/20/2015)
CAPABLE-BSRN Google Site Location Image

Team Satellite Sensor G/L Dates Number of obs Phase angle range (°)
CMA FY-3C MERSI LEO 2013-2014 9 [43 57]
CMA FY-2D VISSR GEO 2007-2014
CMA FY-2E VISSR GEO 2010-2014
CMA FY-2F VISSR GEO 2012-2014
JMA MTSAT-2 IMAGER GEO 2010-2013 62 [-138,147]
JMA GMS5 VISSR GEO 1995-2003 50 [-94,96]
JMA Himawari-8 AHI GEO 2014- -
EUMETSAT MSG1 SEVIRI GEO 2003-2014 380/43 [-150,152]
EUMETSAT MSG2 SEVIRI GEO 2006-2014 312/54 [-147,150]
EUMETSAT MSG3 SEVIRI GEO 2013-2014 45/7 [-144,143]
EUMETSAT MET7 MVIRI GEO 1998-2014 128 [-147,144]
CNES Pleiades-1A PHR LEO 2012 10 [+/-40]
CNES Pleiades-1B PHR LEO 2013-2014 10 [+/-40]
NASA-MODIS Terra MODIS LEO 2000-2014 136 [54,56]
NASA-MODIS Aqua MODIS LEO 2002-2014 117 [-54,-56]
NASA-VIIRS NPP VIIRS LEO 2012-2014 20 [50,52]
NASA-OBPG SeaStar SeaWiFS LEO 1997-2010 204 (<10, [27-66])
NASA/USGS Landsat-8 OLI LEO 2013-2014 3 [-7]
NASA OCO-2 OCO LEO 2014
NOAA-STAR NPP VIIRS LEO 2011-2014 19 [-52,-50]
NOAA GOES-10 IMAGER GEO 1998-2006 33 [-66, 81]
NOAA GOES-11 IMAGER GEO 2006-2007 10 [-62, 57]
NOAA GOES-12 IMAGER GEO 2003-2010 49 [-83, 66]
NOAA GOES-13 IMAGER GEO 2006 11
NOAA GOES-15 IMAGER GEO 2012-2013 28 [-52, 69]
VITO Proba-V VGT-P LEO 2013-2014 25 [-7]
KMA COMS MI GEO 2010-2014 60
AIST Terra ASTER LEO 1999-2014 1 -27.7
ISRO OceanSat2 OCM-2 LEO 2009-2014 2
ISRO INSAT-3D IMAGER GEO 2013-2014 2

The NASA Prediction Of Worldwide Energy Resources (POWER) Project improves the accessibility and usage NASA Earth Observations (EO) supporting community research in three focus areas: 1) renewable energy development, 2) building energy efficiency, and 3) agroclimatology applications. The latest POWER version enhances its distribution systems to provide the latest NASA EO source data, be more resilient, support users more effectively, and provide data more efficiently. The update will include hourly-based source Analysis Ready Data (ARD), in addition to enhanced daily, monthly, annual, and climatology ARD. The daily time-series now spans 40 years for meteorology available from 1981 and solar-based parameters start in 1984. The hourly source data are from Clouds and the Earth's Radiant Energy System (CERES) and Global Modeling and Assimilation Office (GMAO), spanning 20 years from 2001.

The newly available hourly data will provide users the ARD needed to model the energy performance of building systems, providing information directly amenable to decision support tools introducing the industry standard EPW (EnergyPlus Weather file). One of POWER’s partners, Natural Resource Canada’s RETScreen™, will be simultaneously releasing a new version of its software, which will have integrated POWER hourly and daily ARD products. For our agroclimatology users, the ICASA (International Consortium for Agricultural Systems Applications standards) format for the crop modelers has been modernized.

POWER is releasing new user-defined analytic capabilities, including custom climatologies and climatological-based reports for parameter anomalies, ASHRAE® compatible climate design condition statistics, and building climate zones. The ARD and climate analytics will be readily accessible through POWER's integrated services suite, including the Data Access Viewer (DAV). The DAV has been improved to incorporate updated parameter groupings, new analytical capabilities, and the new data formats. Updated methodology documentation and usage tutorials, as well as application developer specific pages, allow users to access to POWER Data efficiently.

+Visit the POWER Program Site to Learn More.