Skip to main content

Kristopher Bedka (NASA)

Title: Research Physical Scientist
Technical Focus Areas: Climate Science, Lidar Science, Applied Science, Air Quality & Weather, Airborne Science
Mission/Project/GroupDAWN, Aerosol Wind Profiler (AWP), SATCORPS
Study Topics: Atmospheric Winds, Doppler Wind Lidar, Severe Convection, Geostationary Imagers, Atmospheric Process Studies, Upper Troposphere – Lower Stratosphere Exchange, Short-Term Prediction, Aviation Weather Hazards, Disasters, Applied Science


Mr. Bedka has spent most of his professional career analyzing atmospheric processes and prediction using satellite-, airborne-, and ground-based observations and models. Throughout his career, he has focused on: 1) development, validation, and application of automated satellite-based convective initiation nowcasting, atmospheric motion vector retrieval, ice crystal aircraft icing, overshooting convective cloud top detection, and above anvil plume / enhanced-V signature detection algorithms, 2) development of satellite-based climatologies of hazardous convective storms, 3) cloud microphysical property retrievals using visible light and passive infrared observations, 4) use of airborne lidar wind, aerosol, and water vapor profiling instruments for atmospheric research and satellite instrument calibration and validation, and 5) convectively-induced tropospheric/stratospheric exchange studies. He has authored or co-authored 50+ peer-reviewed publications on these and other topics, and has a Google Scholar h-index of 29 with over 2500 citations of his papers. He has been or is currently the PI for several NASA ROSES projects within the 2015 Severe Weather Research, 2016 NASA Data for Operations and Assessment, 2018 Applied Sciences Disasters, and the 2019 Earth Science Research From Operational Geostationary Satellite Systems programs. He is a Co-I for the NASA Earth Venture-Suborbital Dynamics and Chemistry of the Summer Stratosphere (DCOTSS) mission. He is currently the instrument scientist for the NASA Doppler Aerosol Wind Lidar (DAWN) and was a PI for the April 2019 NASA Aeolus Cal/Val Test Flight Campaign with the DC-8 aircraft. His work has incorporated cloud-resolving numerical weather prediction model output, passive satellite observations from the global constellation of geosynchronous and polar-orbiting passive satellite imagers, CloudSat, CALIPSO, airborne observations from DAWN, High Altitude Lidar Observatory (HALO), dropsondes, and in-situ probes, NOAA National Weather Service WSR-88D Doppler radar data, and 4-dimensional total lightning detection data.

Publication Bibliography:

Select Publications:


  • NASA Exceptional Achievement Medal (2018) for satellite-based analysis and detection of hazardous convection
  • H.J.E. Reid Award (2019) for the most outstanding publication of the year from NASA LaRC.
  • NASA Group Achievement Awards:

    • Advanced Satellite Aviation Weather Products (ASAP) Initiative (2006)

    • MACPEX Field Campaign (2012)

    • Aviation Climate Change Research Initiative (2014)

    • The CERES Cloud Property Retrieval Subsystem (2014)

    • The Mount Kelud Volcanic Ash Measurement Mission (2017)

    • NASA HIWC (2019)

    • BATAL project (2019)

    • NAAMES (2019) 

Professional Memberships:

  • American Geophysical Union
  • American Meteorological Society

Education/Professional Experience:

  • B.S. in Meteorology (Magna Cum Laude), Northern Illinois University (08/1996-05/2000)
  • M.S. in Atmospheric Science, University of Wisconsin-Madison (09/2000-08/2002)
  • Associate Researcher, University of Wisconsin-Madison, Cooperative Institute for Meteorological Satellite Studies (9/2002 to 07/2009)
  • Senior Research Scientist, Science Systems and Applications, Inc. (SSAI) at the NASA Langley Research Center (08/2009 to 05/2014)
  • Research Physical Scientist, NASA Langley Research Center (05/2014-Present)


Gardening, Cooking, and Fishing

Need to get in touch with Kristopher Bedka? Fill out the contact form below. 

SD Profiles Contact
  • CAPABLE/CRAVE Full Site Photo from left to right site enclosures: 1196A NASA LaRC, MPLnet, Virginia DEQ
    CAPABLE/CRAVE Full Site Photo from left to right site enclosures: 1196A NASA LaRC, MPLnet, Virginia DEQ

  • NASA LaRC NAST-I and HU ASSIST side-by-side for intercomparison
    NASA LaRC NAST-I and HU ASSIST side-by-side for intercomparison

  • Virginia DEQ, NASA and Penn State-NATIVE Enclosures (from right to left)
    Virginia DEQ, NASA and Penn State-NATIVE Enclosures (from right to left)

  • Ozone-sonde away.
    Ozone-sonde away.
  • About to lift.
    About to lift.
PurpleAir PA-II-SD Air Quality Sensor
Laser Particle Counters
Type (2) PMS5003
Range of measurement 0.3, 0.5, 1.0, 2.5, 5.0, & 10 μm
Counting efficiency 50% at 0.3μm & 98% at ≥0.5μm
Effective range
(PM2.5 standard)*
0 to 500 μg/m³
Maximum range (PM2.5 standard)* ≥1000 μg/m³
Maximum consistency error (PM2.5 standard) ±10% at 100 to 500μg/m³ & ±10μg/m³ at 0 to 100μg/m³
Standard Volume 0.1 Litre
Single response time ≤1 second
Total response time ≤10 seconds
Pressure, Temperature, & Humidity Sensor
Type BME280
Temperature range -40°F to 185°F (-40°C to 85°C)
Pressure range 300 to 1100 hPa
Humidity Response time (τ63%): 1 s
Accuracy tolerance: ±3% RH
Hysteresis: ≤2% RH

Pandora capabilities










Total Column O3, NO2, HCHO, SO2, H2O, BrO

0.01 DU

0.1 DU



Virginia Department of Environment Quality in-situ instrumentation






Thermo Scientific 42C (Molybdenum converter)

60 s

NO and NOx

50 pptv


Teledyne API 200EU w/ photolytic converter
(EPA) PI-Szykman

20 s


50 pptv


Thermo Scientific 49C (VADEQ)

20 s


1 ppbv


Thermo Scientific 48i (VADEQ)

60 s


40 ppbv


Thermo Scientific 43i (VADEQ)

80 s


0.2 ppbv


Thermo Scientific 1400AB TEOM (VADEQ)

600 s

PM2.5 (continuous)


1 3%

Thermo Scientific Partisol Plus 2025 (VADEQ)

24 hr

PM2.5 (filter-based FRM)- 1/3 days



Large area view.
Latitude: 37.1038
Longitude: -76.3872
Elevation: 3 m Above sea level
Scenes: urban, marsh, bay, river and farm.


  • The inner red circle is a 20km CERES foot print centered on the BSRN-LRC site.
  • The pink circle represents a possible tangential 20km foot print.
  • The middle red circle represents the area in which a 20km foot print could fall and still see the site.
  • Yellow is a sample 40 deg off nadir foot print.
  • The outer red circle is the region which would be seen by a possible 40 deg off nadir foot print.
The BSRN-LRC sun tracker at the NASA Langley Research Center on a snowy day (02/20/2015) The BSRN-LRC sun tracker at the NASA Langley Research Center on a snowy day (02/20/2015)
CAPABLE-BSRN Google Site Location Image

Team Satellite Sensor G/L Dates Number of obs Phase angle range (°)
CMA FY-3C MERSI LEO 2013-2014 9 [43 57]
CMA FY-2D VISSR GEO 2007-2014
CMA FY-2E VISSR GEO 2010-2014
CMA FY-2F VISSR GEO 2012-2014
JMA MTSAT-2 IMAGER GEO 2010-2013 62 [-138,147]
JMA GMS5 VISSR GEO 1995-2003 50 [-94,96]
JMA Himawari-8 AHI GEO 2014- -
EUMETSAT MSG1 SEVIRI GEO 2003-2014 380/43 [-150,152]
EUMETSAT MSG2 SEVIRI GEO 2006-2014 312/54 [-147,150]
EUMETSAT MSG3 SEVIRI GEO 2013-2014 45/7 [-144,143]
EUMETSAT MET7 MVIRI GEO 1998-2014 128 [-147,144]
CNES Pleiades-1A PHR LEO 2012 10 [+/-40]
CNES Pleiades-1B PHR LEO 2013-2014 10 [+/-40]
NASA-MODIS Terra MODIS LEO 2000-2014 136 [54,56]
NASA-MODIS Aqua MODIS LEO 2002-2014 117 [-54,-56]
NASA-VIIRS NPP VIIRS LEO 2012-2014 20 [50,52]
NASA-OBPG SeaStar SeaWiFS LEO 1997-2010 204 (<10, [27-66])
NASA/USGS Landsat-8 OLI LEO 2013-2014 3 [-7]
NOAA-STAR NPP VIIRS LEO 2011-2014 19 [-52,-50]
NOAA GOES-10 IMAGER GEO 1998-2006 33 [-66, 81]
NOAA GOES-11 IMAGER GEO 2006-2007 10 [-62, 57]
NOAA GOES-12 IMAGER GEO 2003-2010 49 [-83, 66]
NOAA GOES-15 IMAGER GEO 2012-2013 28 [-52, 69]
VITO Proba-V VGT-P LEO 2013-2014 25 [-7]
KMA COMS MI GEO 2010-2014 60
AIST Terra ASTER LEO 1999-2014 1 -27.7
ISRO OceanSat2 OCM-2 LEO 2009-2014 2

The NASA Prediction Of Worldwide Energy Resources (POWER) Project improves the accessibility and usage NASA Earth Observations (EO) supporting community research in three focus areas: 1) renewable energy development, 2) building energy efficiency, and 3) agroclimatology applications. The latest POWER version enhances its distribution systems to provide the latest NASA EO source data, be more resilient, support users more effectively, and provide data more efficiently. The update will include hourly-based source Analysis Ready Data (ARD), in addition to enhanced daily, monthly, annual, and climatology ARD. The daily time-series now spans 40 years for meteorology available from 1981 and solar-based parameters start in 1984. The hourly source data are from Clouds and the Earth's Radiant Energy System (CERES) and Global Modeling and Assimilation Office (GMAO), spanning 20 years from 2001.

The newly available hourly data will provide users the ARD needed to model the energy performance of building systems, providing information directly amenable to decision support tools introducing the industry standard EPW (EnergyPlus Weather file). One of POWER’s partners, Natural Resource Canada’s RETScreen™, will be simultaneously releasing a new version of its software, which will have integrated POWER hourly and daily ARD products. For our agroclimatology users, the ICASA (International Consortium for Agricultural Systems Applications standards) format for the crop modelers has been modernized.

POWER is releasing new user-defined analytic capabilities, including custom climatologies and climatological-based reports for parameter anomalies, ASHRAE® compatible climate design condition statistics, and building climate zones. The ARD and climate analytics will be readily accessible through POWER's integrated services suite, including the Data Access Viewer (DAV). The DAV has been improved to incorporate updated parameter groupings, new analytical capabilities, and the new data formats. Updated methodology documentation and usage tutorials, as well as application developer specific pages, allow users to access to POWER Data efficiently.

+Visit the POWER Program Site to Learn More.