
1. Introduction
Satellite instruments detecting atmospheric composition observe influential atmospheric trace gases which are 
important for air quality, climate forcing, and the stratospheric ozone layer (Veefkind et al., 2012). Spaced-based 
remote sensing products provide routine and consistent observations which improve our understanding of the 
state of our atmosphere. Such observations help us understand processes controlling air quality, identify long- 
and short-term variability, track pollution plumes, constrain emissions and concentrations, and improve atmos-
pheric models (National Academies of Sciences, Engineering, and Medicine, 2018; Sun et al., 2018; Veefkind 
et al., 2012). However, the ability of satellite observations to provide information on our atmosphere is limited as 
traditional data processing methods (e.g., averaging) may not be effective to extract the spatiotemporal variabil-
ity without prior knowledge of an emission's source's spatial and temporal behavior, such as location, time, and 
plume shape. For reactive trace gases with short atmospheric lifetime, such as nitrogen dioxide (NO2), sparse in 
situ sampling (e.g., surface networks), and coarse resolution observational products cannot always capture the 
spatial and temporal heterogeneity of NO2 as it varies over short distances and time. These limitations impede 
efforts to further understand regional atmospheric composition, processes, trends, and source variability of such 
an important climate forcing species.

Abstract Satellite instruments have the most potential of capturing trace gas variability as they continually 
observe the atmosphere and its composition over wide regions. Yet the increasingly large data size of satellite 
products poses a challenge for their use as traditional data processing methods (e.g., averaging) may not be 
effective to extract the spatiotemporal variability without prior knowledge of an emission source's spatial 
and temporal behavior, such as location, time, and plume shape. Here, an agile clustering algorithm entitled 
CLustering of Atmospheric Satellite Products (CLASP) is presented to identify the spatiotemporal variability 
of trace gases captured in satellite observations. We find the knowledge discovery method for large data sets, 
clustering, is suited for identifying the variability of trace gases in satellite observations, as such CLASP is 
rooted in density-based clustering methods. CLASP detects features from satellite observations and identifies 
their spatial, magnitude, and temporal axis leading to a better understanding of the spatiotemporal variability 
of atmospheric trace gases. To test the applicability of CLASP, the algorithm is applied to TROPOspheric 
Monitoring Instrument NO2 observations illustrating some of its different capabilities. Implementing CLASP 
for event identification, capturing plume variability, and source detection, CLASP identified wildfires, 
observed disruptions from COVID-19 lockdown restrictions, and detected irregular emissions from oil and gas 
operations.

Plain Language Summary Satellite instruments capture the location and timing of trace gases 
as they have daily observations of the atmosphere over a wide spatial coverage. With increasing spatial and 
temporal resolutions of satellite products, traditional data-reducing methods such as averaging could be 
insufficient in analyzing increasingly large satellite observations. The user must have prior knowledge of the 
location and temporal behavior of emission sources in order to choose the suitable averaging intervals and 
such information is often lacking or unreliable for non-urban and point sources. To alleviate this limitation, a 
clustering algorithm titled CLustering of Atmospheric Satellite Products (CLASP) is presented in this work. 
CLASP identifies features in satellite observations by their location, amount, and time. CLASP was applied to 
the satellite observational data set, TROPOspheric Monitoring Instrument NO2, to identify wildfires, observe 
COVID-19 lockdown changes, and spot irregular emissions from oil and gas operations.
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NO2 is one of many trace gases observed to improve our understanding of how natural processes and anthropogenic 
emissions influence air quality and climate (National Academies of Sciences, Engineering, and Medicine, 2018). 
NO2 is a criterion pollutant and plays a key role in controlling tropospheric ozone (O3). NO2 can chemically react 
to form the nitrate radical (NO₃), nitric acid (HNO3), and nitrate aerosol. Because it is a short-lived combustion 
tracer, NO2 is widely used in detecting changes in fossil fuel emissions. Knowledge of NO2 spatiotemporal vari-
ability is necessary for air quality and understanding the earth's atmosphere.

Satellite instruments have been used to continuously detect changes in atmospheric NO2 and other trace gases since 
the 1990s, notably with polar-orbiting satellite missions such as Global Ozone Monitoring Experiment (GOME; 
Burrows et al., 1999), Global Ozone Monitoring Experiment 2 (GOME-2; Munro et al., 2016), SCanning Imag-
ing Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY; Bovensmann et al., 1999), Ozone 
Monitoring Instrument (OMI; Levelt et  al.,  2006), and TROPOspheric Monitoring Instrument (TROPOMI; 
Veefkind et al., 2012). These polar-orbiting instruments have been building off one another, improving aspects 
such as detection techniques and spatial resolution. Being one of the newest polar-orbiting instruments, TROPOMI 
carries an initial spatial resolution of 3.5 × 7 km 2, and since 6 August 2019, 3.5 × 5.6 km 2 at nadir, which is a 
great improvement in spatial resolution compared to that of GOME (40 × 320 km 2), GOME-2 (40 × 80 km 2), 
SCIAMACHY (30 × 60 km 2), and OMI (13 × 24 km 2). Improvements to the temporal resolution are made in 
geostationary satellite missions which observe air quality and composition at an hourly rate, such as the Tropo-
spheric Emissions: Monitoring of Pollution (TEMPO; Zoogman et al., 2017) (2.1 × 4.7 km 2) mission over North 
America the Geostationary Environmental Monitoring Spectrometer (GEMS; Kim et al., 2020) (3.5 × 8 km 2) 
mission over Asia, and the future missions such as Sentinel-4 (Ingmann et al., 2012) (8 × 8 km 2) to be deployed 
in 2024 for observations over Europe.

Future difficulties in the application of satellite observations of trace gases are seen as the corresponding data 
size increases with each spatial and temporal resolution improvement. With the increased spatial resolution, 
TROPOMI has a data size of approximately 17.7 times that of OMI for 1 day's global pass. With the launch of 
TEMPO, the corresponding data size will be multiplied further due to the improvements in spatial and temporal 
resolution. The ever-growing observational record from satellite instruments limits its use as traditional data 
processing methods may not be robust enough to extract the spatiotemporal variability of trace gases leaving 
unanswered questions about our atmosphere.

Satellite observations of trace gases capture plumes or features which carry spatial, magnitude, and temporal 
properties. Features are seen when relatively high magnitude points are located near one another and create a 
“hotspot” effect. Existing processing practices to locate features are often performed retroactively where prior 
knowledge or supervision is required. Identifying features in observations, like known source points, city centers, 
wildfires (Griffin et al., 2021), oil and gas pipeline leaks (Pandey et al., 2019), or increased use of electrical 
generating units (van der A et al., 2020) require known information on the location and occurrence of the feature. 
Finch et al.  (2022) reported that a supervised deep learning method, such as a convolutional neural network, 
can identify TROPOMI NO2 plumes. However, this method requires pre-processing steps such as (a) creating 
normalized images of TROPOMI NO2, and (b) training the model for accurate identification. A training data set 
was required to be created based only on the author's judgment of what is a plume. Finch et al. (2022) note a more 
precise approach in plume identification is needed as a high degree of subjectivity is included in their method.

Once identified, the preservation of the location and magnitude of known features such as city centers (Ialongo 
et  al.,  2020), large point sources such as power plants (Goldberg et  al.,  2019), and area sources (de Gouw 
et al., 2020) are often done with the basic technique of averaging. However, because averaging diminishes and 
smooths any variable features in the temporal, spatial, and magnitude dimension, it sometimes can hinder the 
discovery of time-varying emission and concentration patterns. This limitation motivated some fundamental 
questions on current practices using satellite observations of trace gases: (a) Can features be identified with no 
prior knowledge of any domain or time frame? (b) Can fine feature variability be preserved? (c) Can temporally 
frequent or infrequent emission sources be reproducibly identified?

Here, we will address these motivating questions to determine if trace gas variability seen in satellite observations 
can be resolved using existing or novel data processing techniques. To do so, we will first explore the data mining 
method of clustering and its application for identifying features in satellite observations of trace gases. Clustering 
is a knowledge discovery method for large data sets as it groups observations based on their similarity (Birant & 
Kut, 2007). To our best knowledge, clustering has not been applied for variability detection of atmospheric trace 
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gases but has great potential for translating this variability. Second, we will describe a new, agile clustering algo-
rithm entitled CLustering of Atmospheric Satellite Products (CLASP), to identify and determine the frequency 
of features in satellite observations of trace gases. Third, we will show the application of CLASP on TROPOMI 
NO2 observations for event identification, plume variability, and source identification. Finally, we will discuss 
the ability of CLASP to observe the spatiotemporal variability of other trace gases throughout the global data set 
of satellite observations of trace gases.

2. Evaluating Clustering Algorithms
Clustering algorithms are attractive for the task of identification of trace gas variability. They are an unsupervised 
learning method that does not need pre-processing, training, or prior knowledge of the data set. The two main 
branches of clustering techniques, centroid- and density-based clustering were explored for the identification 
of trace gas spatiotemporal variability. We chose not to use a common centroid-based method, k-means, in the 
development of CLASP as the algorithm requires a known number of features or clusters to search for. Given 
atmospheric gas variability due to meteorology, emissions, or lifetime, it is difficult to know the exact number of 
features that will appear in the satellite observation, and thus the number of clusters supplied to k-means cannot 
be known. Further, k-means can only be applied to one spatial or temporal dimension. Reducing or squeezing the 
data to one dimension can diminish the spatiotemporal variability of trace gases and dampen features of interest. 
A greater potential was found with density-based clustering methods as the number of clusters does not need to 
be known. Below we discuss the specifics of density-based clustering for its use with satellite observations of 
trace gases.

2.1. Density-Based Clustering

The most widely used density-based clustering algorithm, Density-Based Spatial Clustering of Applications with 
Noise (DBSCAN), is designed to discover arbitrary-shaped clusters in any large database and simultaneously 
distinguish noise points when considering spatial properties (Ahmed & Razak, 2016). The algorithm creates 
clusters where the density of points is considerably higher than outside the cluster leaving the sparsely distributed 
points as noise (Ester et al., 1996). Identified shapes of clusters or features can be arbitrary as they are only deter-
mined by the distance between two points (Ester et al., 1996). These features of DBSCAN make it an attractive 
choice for clustering satellite observations for variability detection. However, DBSCAN's implementation of 
satellite observations detecting atmospheric trace gases is limited.

Few applications of DBSCAN extensions are seen in Franklin et  al.  (2019), Lu et  al.  (2021). A hierarchical 
version of DBSCAN called HDBSCAN was used to categorize flaring signals in VIIRS Nightfire observations 
by Franklin et al.  (2019). Lu et al.  (2021) used DBSCAN as an initial step in a Deep Neural Network model 
(DBSCAN-DNN) where the algorithm divided observations from the Suomi National Polar Partnership satellite 
(SNPP) and the AOD product of Himawari-8 into different pollution levels. With each extension of DBSCAN, 
there is still no consideration of the temporal element in satellite observations, only spatial. Spatial (S) and tempo-
ral (T), ST-DBSCAN from Birant and Kut (2007), builds off DBSCAN but applies three improvements for the 
clustering of spatial-temporal data (Birant & Kut, 2007). First, ST-DBSCAN can cluster data based on its spatial, 
temporal, and non-spatial-temporal attributes, such as magnitude; second, ST-DBSCAN can detect noise points 
when clusters of different densities exist; and third, it can ensure that cluster values are similar across the width of 
the cluster (Birant & Kut, 2007). ST-DBSCAN has been applied to a limited number of data sets carrying spatial 
and temporal properties and has found success (Birant & Kut, 2007). Yet, in each study, the density-based clus-
tering algorithm was applied for the extraction of known attributes in the data set which requires prior knowledge 
of the domain and time frame.

DBSCAN and ST-DBSCAN were applied to TROPOMI NO2 products for variability detection and found they 
did not lead to clear results (Figure S1 in Supporting Information S1). The reasons DBSCAN and ST-DBSCAN 
failed are (a) the algorithms cannot automatically extract features of interest, (b) there is difficulty finding correct 
input parameters, and (c) there is no or a poor consideration of temporal properties. To allow for trace gas 
variability a clustering algorithm must incorporate preprocessing methods that identify features, providing easy 
implementation with no prior knowledge of the data set, and consider the temporal properties of the observations.

It was discovered that density-based clustering provides a foundation that when built upon can describe the spati-
otemporal variability of atmospheric trace gases. As such, high potential in DBSCAN's implementation is seen 
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for the capture of spatial variability when an appropriate preprocessing tech-
nique is applied but still requires temporal properties of observations to be 
considered (Figure S2 in Supporting Information S1). The potential identified 
with DBSCAN prompted the development of CLASP.  In the next section, 
CLASP is described illustrating how clustering techniques can be used to 
identify spatiotemporal variability of trace gases in satellite observations.

3. CLASP Description
CLASP translates the spatiotemporal variability of trace gases in satel-
lite observations into clusters that describe the feature's spatial location, 
magnitude variation, and temporal frequency. The algorithm is rooted 
in density-based clustering methods but builds on the techniques to find 
features with no prior knowledge of the data set and preserve feature vari-
ability. CLASP requires satellite observations on a level 3 grid (O) and 
consistent sampling frequency (e.g., 1  day, 1  hr, etc.) The algorithm asks 
for user inputs to define a sub-global region of interest (Bounds), describe 
the region (MagInful, Source), and control how clusters are formed (EpsS-
cale, DeltaM, MinPoints, FreqThreshold, and MinDates). Details on input 
specifications are listed in Table S1 in Supporting Information S1. We note 
that CLASP requires observations to be screened using quality controls first 
before the user passes them into the algorithm. With inputs, CLASP moves 
through four steps: (a) feature detection, (b) spatial variability identification, 
(c) feature magnitude classification, and (d) frequency identification, which 
leaves each plume captured by CLASP described spatially, by magnitudes, 
and temporally. Figure  1 shows a flowchart of CLASP and Figure S3 in 
Supporting Information S1 displays the algorithm's structure. In the upcom-
ing sections, CLASP is described in detail where a synthetic sample data set 
was used to illustrate and verify the methodology.

3.1. Feature Detection

The first step in CLASP is to determine features of interest. In the synthetic 
data set, 5 days of values are considered, where each day has three randomly 

generated circular-shaped features with noise. Magnitude is seen in the data set where values range from 0 to 
21 and represent a generic quantitative measure. Figure 2a displays a single day in the data set for the defined 
region of interest, and Figure S4 in Supporting Information S1 displays results for all days. The magnitude of 
atmospheric trace gases varies on the spatial location and temporal interval of their observational data set, as 
such the features of interest can change on the same variables. Relative methods are utilized to capture the vari-
ability of atmospheric trace gas features. CLASP employs the region's magnitude values to determine features 
relatively for each time step and region inputted by the user. Specifically, the relative cumulative frequency of 
the magnitude is used to assess the region and reveal where high magnitude values encompassing a pollutant 
hotspot are found. Following (Lee et al., 2022; Matschullat et al., 2000) the relative cumulative frequency of 
the magnitude is used to determine the threshold below which data is excluded and the main pollutant burden 
is revealed. The relative cumulative frequency curve is fitted with a piecewise linear function which produces 
“turning points” to be used as threshold values. As suggested by Matschullat et al. (2000) threshold values can 
be interpreted as where different processes influence the region's distribution of atmospheric  trace gases. The 
threshold points can be used to define the characteristics of the regions. Partitioning the data set at threshold 
points can identify the relative “background” values or samples that may not be influenced by human impacts 
(Matschullat et al., 2000). Conversely, partitioning can identify the samples that carry a higher magnitude, such 
as those influenced by anthropogenic activities, biomass-burning events, or other high-magnitude-producing 
processes. CLASP takes advantage of this partitioning when selecting the appropriate threshold value for the 
region analyzed. The input variable, MagInflu (yes or no), allows the user to define which characteristics of the 

Figure 1. Flowchart of CLustering of Atmospheric Satellite Products. Ovals 
represent start and end terminators, rectangles indicate processes, diamonds 
are decisions, and rhombus represents the data which is then used in the 
algorithm.
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region or its relative magnitude range it wants to observe and classify. Once MagInflu is applied, the region's 
features of interest are revealed (Figure 2b).

The input variable Source (yes or no) can be used to further describe which features are of interest to the user. 
Source determines if features from known sources are to be identified by CLASP, as shown in Figure S5 in 
Supporting Information S1. Sources could be emission source locations from publicly available data sets, such as 
EPA's Continuous Emission Monitoring Systems (CEMS), EPA's National Emission Inventory (NEI), offshore 
platform locations (BOEM), the U.S. Census for significant city centers, fire locations (FINN, GDEF4), or 
recorded lightning strikes (Geostationary Lightning Mapper (GLM)). Source location information is controlled 
by the user and can be tailored to specific analyses. When Source is no CLASP will exclude features that include 
a source point, and when Source is yes CLASP will include all features detected in the region (Figure S6 and S8 
in Supporting Information S1). CLASP allows for the detection of all features in a region, controlled by the user 
inputs on MagInflu and Source.

3.2. Spatial Variability Identification

With features detected, CLASP moves to its second step where the spatial variability of individual features is 
identified resulting in spatial clusters. Atmospheric trace gases are dependent on meteorological, chemical, and 
human variables that control the location of the detected feature. It is important to identify the spatial variability 
of each feature to understand its source origins and the pollutants' impact on the region's air quality. Therefore, 
the latitude and longitude points of the detected features are used to estimate the spatial similarity between the 
features. Methods were adapted from DBSCAN for identifying spatial variability. Traditional applications of 

Figure 2. (a) First step in CLustering of Atmospheric Satellite Products, with inputs MagInflu = no, Source = yes, EpsScale = 1, MinPoints = 5, DeltaM = 1, 
freqthreshold = no, to define a region of interest, (b) second step to remove low magnitude values, (c) third step defines spatial clusters where each distinct color 
represents a different cluster, and (d) fourth step creates magnitude clusters where each distinct color represents a different cluster and magnitude range as indicated in 
the color bar. To find each day's spatial and magnitude clusters for the synthetic data set was less than 5 s.
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DBSCAN see clustering along the magnitude axis to determine if points are of similar density to where a cluster 
can be formed. In CLASP, DBSCAN is used to cluster along the spatial axis. It is assumed that the latitude and 
longitude pairs of the observational data set are found on a 2-D surface. The assumption of a 2-D surface is made 
as it is the similarity between points that are being calculated. It is the similarity distance between points that are 
used to infer relative spatial positions. The Euclidean distance (𝐴𝐴 𝐴𝐴(𝑝𝑝𝑝 𝑝𝑝) =

√
∑𝑛𝑛

𝑖𝑖
(𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖)

2 ) is calculated for each 
latitude and longitude pair, providing a similarity metric between each pair. Objects whose similarity metric is 
less than double the minimum spatial scale of the data set when the minimum number of points is met form a 
spatial cluster shown in Figure 2c.

3.3. Feature Magnitude Classification

The third step in CLASP is to classify a feature's magnitude found in each spatial cluster. The magnitude is the quan-
tity that a satellite retrieves and describes the distribution of the severity of the pollutant in the region. For TROPOMI 
NO2, the magnitude is tropospheric vertical column density. It is necessary to classify the distribution to understand 
the different levels of the pollutant experienced in a region and its perceived impact. Magnitude clusters are charac-
terized by the local magnitude distribution within each spatial cluster (Wu et al., 2004). To observe the distribution 
of magnitudes captured in the region, values are divided into intervals using Sturge's rule (𝐴𝐴 𝐴𝐴 = [𝑙𝑙𝑙𝑙𝑙𝑙2 𝑛𝑛 + 1] ). It is 
assumed that data points close to one another have similar magnitudes or values, thus clusters are formed by identi-
fying nearest neighbors. The input variables EpsScale, DeltaM, and MinPoints are used to describe the characteris-
tics of the magnitude clusters. EpsScale controls the spatial size of each magnitude cluster identified, DeltaM allows 
the user to define the minimum difference magnitude clusters can possess, and Minpoints ensures each magnitude 
cluster contains a minimum number of points. Input parameters help describe the magnitude observed in each spatial 
cluster and form magnitude clusters that easily describe the magnitude distribution in a region as shown in Figure 2d.

3.4. Frequency Identification

After trace gas features are identified spatially and by their magnitude (shown in Figure 2), the collection of 
classified features is then described temporally. CLASP tracts day-to-day plume variability by creating temporal 
clusters, shown in Figure 3 for the sample synthetic data set. Temporal clusters are formed when the period of 
analysis is longer than the minimum time step of the observational data set (e.g., 1 day for TROPOMI NO2). 
Identifying the frequency of features informs the user if such a feature is a repeated event providing a better under-
standing of the temporal variability of the pollutant in the region of interest. With each identified spatial cluster 
in the temporal period, the frequency of the latitude and longitude points is calculated. The unique frequency of 
points within each spatial cluster is used to create temporal clusters. Two input variables control temporal cluster 
formation, FreqThreshold, and MinDates. FreqThreshold allows for infrequent points to be removed reveal-
ing only regularly occurring features in the region, and MinDates ensures that a specified number of dates are 
considered. It is assumed that data points near one another will be of similar frequency, allowing for the creation 
of temporal clusters shown in Figure 3.

After temporal clusters are formed, CLASP outputs a data set that carries the set of observations and spatial, 
magnitude, and temporal cluster label descriptions for each identified feature. CLASP took approximately 10 s 
to identify and categorize the three sources observed (Figure S13 in Supporting Information S1). The number of 
sources does not linearly affect the computational time of CLASP, however, the resolution does (Figure S13 in 
Supporting Information S1). With each clustering output, CLASP allows the user to easily select what type of 
features it wants to analyze, from the location of a feature, its magnitude range, or its frequency. CLASP moves 
beyond popular clustering methods and allows for satellite observations of trace gases to be described more fully 
providing a better understanding of the spatiotemporal variability of atmospheric trace gases. CLASP relatively 
assesses a region and extracts important features based on the magnitude distribution. The detected features are 
then placed in spatial and magnitude clusters where the temporal frequency and pollutant burden of the feature 
can be determined. With CLASP, we see that the user does not have to have prior knowledge of a domain or 
time frame as CLASP can search any given region or period and detect the relatively important features. Feature 
variability is preserved with CLASP, as it identifies each feature and assesses its frequency. With the algorithm 
structure presented here, one can better understand the spatiotemporal variability of atmospheric trace gases and 
our atmosphere.
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4. Application With TROPOMI NO2

To test the applicability of CLASP, CLASP was applied to TROPOMI NO2 observations. TROPOMI is aboard 
the Sentinel 5 Precursor (S5P). The sun-synchronous instrument uses passive remote sensing to observe gases 
down into the troposphere and gives near-global coverage in 1 day with an equator crossing time near 13:30 
local solar time. TROPOMI operational nitrogen dioxide (NO2) data processor version 1.2.2–1.4.0 (KNMI, 2018, 
https://doi.org/10.5270/S5P-s4ljg54) and processor version 2.2.0–2.4.0 (KNMI, 2021, https://doi.org/10.5270/
S5P-9bnp8q8), which carries an improved spatial resolution of 5.5 × 3.5 km at nadir are used to illustrate the 
capabilities of CLASP. Specific processor version information for each year used in the search space is listed in 
Text S1 in Supporting Information S1. Level-2 TROPOMI products where the quality assurance (qa) value is 
higher than 0.75, solar zenith angle less than 75° and a cloud radiance fraction below 0.3 were oversampled to 
0.01° × 0.01° using a physics-based oversampling process (Sun et al., 2018). For each search space, at least 85% 
of quality pixels were required and dates employed had no separation of weekdays and weekends. Any exclusion 
of dates was due to the inability to pass the criteria employed for overpass selection for reasons such as high 
cloud obstructions or inability to meet quality controls. Processing a 1° × 1° grid of TROPOMI NO2 observations 
oversampled to 0.01° × 0.01° using 4 CPU cores, for 1 day, 1 month, and 6 months CLASP takes ∼3, ∼90, and 
∼180 s, respectively. Increasing the processing cores will increase the speed of the algorithm for larger search 
spaces.

The state of Texas was chosen as a search location due to its diverse landscape of industrial and commercial 
processes. TROPOMI NO2 observations during January 2019–October 2022 over the state of Texas were tested 
and first divided into 1° × 1° grids (Figure S7 in Supporting Information S1) to reduce the size of the data 
being used in CLASP. CLASP searched the grid boxes including source points to identify the spatiotemporal 
variability of atmospheric NO2. With outputs delivered by CLASP, three case studies were selected to show a 
few different capabilities of CLASP: (a) event identification, (b) spatiotemporal variability preservation, and (c) 
irregular source identification.

Figure 3. (a–e) The varying plume locations within the synthetic data set. (f) The last step in CLustering of Atmospheric Satellite Products (CLASP) is to construct the 
temporal clusters with MinDates = 2, capturing how CLASP tracks day-to-day plume variability.
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4.1. Event Identification: Wildfires

One key strength of CLASP is event identification. CLASP individually searches the distribution of trace gases 
at the timestep of the provided data allowing for unique features to be identified. As an example, from the 
user-defined search space described above, CLASP identified a single emission event on 20 March 2022 located 
in Central Texas (USA) west of the Dallas-Fort Worth city center (Figure 4a). With CLASP, it was observed 
this event only occurred one time in this location and was an anomalous event for this region. Current emission 
inventories employed in the search did not associate this identified feature with any known source point. The joint 
MODIS and VIIRS (Schroeder et al., 2014) true-color image at approximately the same time as the TROPOMI 
overpass (Figure  4b) (obtained from NASA Worldview: https://worldview.earthdata.nasa.gov/, last access: 3 
November 2022) and news reports (The New York Times, 2023, https://www.nytimes.com/2022/03/20/us/wild-
fires-texas-eastland-complex.html; Single Incident Information, 2023, https://inciweb.nwcg.gov/incident-infor-
mation/txtxs-big-l-fire) were used together for the determination of the predominant emitter for this event. It was 
discovered that this event was associated with wildfire activity.

Figures 4c and 4d displays the spatial and magnitude clusters identified by CLASP. Spatial clusters reveal the 
location and extent of the NO2 plumes observed in the region while the magnitude clusters display the range of 
values emitted by the event. Spatial clusters whose magnitude did not carry similar values to that which domi-
nated the region were removed leaving the relative NO2 burden for the region. The identification of this wildfire 
event from the user-defined grid box search of TROPOMI observations over Texas illustrates the combined effect 
of TROPOMI and CLASP. Since wildfire activity can be identified using other databases and methods, this is 

Figure 4. CLustering of Atmospheric Satellite Products (CLASP) used for wildfire identification with inputs MagInflu = yes, Source = yes, EpsScale = 5, 
MinPoints = 10, DeltaM = 5. (a) TROPOspheric Monitoring Instrument NO2 observation on 20 March 2022, (b) MODIS true-color image with VIIRS fire hotspots (c) 
spatial clusters identified by CLASP where each distinct color represents a different cluster and (d) magnitude clusters identified by CLASP, where each distinct color 
represents a different cluster and magnitude range as indicated in the color bar.
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not the motivator of CLASP development. However, the correct identification of the wildfire hotspot by CLASP, 
as supported by Figure 4b, illustrates the algorithm's validity; that is, single emission events or distinct features 
occurring at the sampling frequency can be captured by CLASP without knowledge of where or when the event 
has taken place. With high-resolution satellite observations and CLASP, trace gas distributions can be identified 
at the rate at which satellite observations are available.

4.2. Trace Gas Spatiotemporal Variability Preservation: COVID-19 Lockdown

CLASP captured the variations of NO2 within a search period. To demonstrate the encapsulation of variability 
and its preservation, CLASP outputs during the COVID-19 pandemic shutdown over the Houston metropolitan 
area in Texas were analyzed. The Texas government declared a public health disaster in March 2020 which 
changed emission patterns across the state. Shutdown orders drove plume variability due to normality being 
disrupted and this disruption was captured by TROPOMI observations. Houston has a diverse emission profile 
where NOx is readily found as the region is home to heavy road traffic as well as many industrial facilities. With 
TROPOMI observations, CLASP's temporal clusters were able to identify and preserve the variations in NO2 
emissions patterns experienced in Houston during the COVID-19 lockdown period.

Figure  5 displays CLASP temporal clusters for pre-lockdown (2019) and lockdown (2020) conditions during 
July and August. The months of July and August were chosen for analysis as quality retrievals from TROPOMI 
NO2 following selection criteria were found across both periods and were included during the shutdown period 
(March 2020–March 2021, Houston Public Media, 2021). County lines and primary roads (TIGER/Line Shape-
files: https://www.census.gov/cgi-bin/geo/shapefiles/index.php) are overlaid on the temporal clusters. For each 
period, the overall emission pattern is similar but specific variations in the location of frequent plume occurrences 
are seen. In pre-lockdown conditions, Figures 5a and 5c, temporal clusters of NO2 are found throughout the region, 
near major highways and industrial areas with similar frequency. In lockdown conditions, Figures 5b and 5d, there 
is a decrease in the daily frequency of temporal clusters around major highways and an increase in the frequency of 
NO2 clusters near an industrial center, commonly known as the Houston Ship Channel. Spatiotemporal variations 
are due to shutdown orders causing a decline in road traffic emissions when many industrial facilities were deemed 
essential services and continued operations. Archer et al. (2020), Goldberg et al. (2020), and Fioletov et al. (2022) 

Figure 5. CLustering of Atmospheric Satellite Products (CLASP) temporal clusters in the Houston, TX area for pre-lockdown (a) July 2019 and (c) August 2019, and 
lockdown (b) July 2020 and (d) August 2020 conditions, with inputs MagInflu = yes, Source = y, EpsScale = 5, MinPoints = 10, DeltaM = 5, freqthreshold = no, 
MinDates = 2. Each color represents a different cluster corresponding to the number of dates a plume was identified by CLASP, as indicated in the color bar where the 
cluster number is shown with the number of dates.
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observed COIVD-19 driven changes in NO2 seen from TROPOMI and OMI, where column density declines for 
the lockdown period of April 2–20, 2020 in Houston range from ∼15% to 20%. Specific column density varia-
tions in identified plumes during July and August 2019-2020 are further reflected in CLASP's magnitude clusters. 
There is a 9.2% and 6.7% decrease pre (2019) and lockdown (2020) conditions for July and August, respectively.

Traditional data processing methods such as averaging shown in Figure S10 in Supporting Information S1, do not 
capture the plume variations during this period and dampen the location of the observed plume differences driven 
by COVID-19 changes. By contrast, the variability of plume location, shape, and frequency is preserved when 
using CLASP. The temporal clusters of CLASP allow for the observation of the cumulative impact of a trace gas, 
where averaging displays the mean plume shape and no information about the temporal attributes of the data set. 
CLASP's temporal clusters go beyond averaging and allow the user to be informed of where and the frequency of 
trace gas emissions captured by satellite observations.

4.3. Irregular Sources: Oil and Gas Operations

During the course of the search, CLASP identified irregular emission patterns, an example of which is located 
south of San Antonio, TX, as shown in Figure 6 delineated with a red box. This emission source occurs at 
intermittent intervals throughout the search period with varying frequencies. The identified infrequent source 
is in the Eagle Ford basin, a prominent oil and gas-producing region home to numerous active gas and oil well 
sites (Figure S11 in Supporting Information S1). It is expected that this infrequent source is associated with 
oil and gas production. In oil and gas operations, NO2 is a pollutant that is released by equipment (internal 
combustion engines) used to run operations including drilling and gas flaring (de Gouw et al., 2020; Dix 
et al., 2020). NOx emissions are not linearly emitted in oil and natural gas operations (Dix et al., 2020) due 
to the varied use of equipment, flaring practices, and vehicular emissions observed during good production. 
The varied NOx emissions from oil and gas operations create many irregular NOx sources across the state of 
Texas which may go unnoticed using traditional data processing methods (Figure S12 in Supporting Informa-
tion S1) or to the lack of knowledge of activities. Figure 6 displays temporal clusters for 2019, 2020, and 2021 
separated into two 6-month periods within each year (May-October, November-April). From May-October for 

Figure 6. CLustering of Atmospheric Satellite Products (CLASP) temporal clusters identifying an irregular source delineated with a red box near San Antonio, 
TX strongly observed in May-October (a) 2019, (b) 2020, (c) 2021, and not strongly observed in November–April (d) 2019, (e) 2020, and (f) 2021, with inputs 
MagInflu = yes, Source = yes, EpsScale = 5, MinPoints = 10, DeltaM = 5, freqthreshold = no, MinDates = 4. Each color represents a different cluster corresponding 
to the number of dates a plume was identified by CLASP, as indicated in the color bar where the cluster number is shown with the number of dates. Black stars identify 
source point locations from EPA's 2017 National Emissions Inventory. Pink stars identify cities with a population greater than 10,000 people as reported by the 2020 
United States census.
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each year, there is an increase in the number of NO2 plumes identified by CLASP correlating to a frequent 
NO2 source during these months. When each year's first 6-month period (May-October) is compared to the 
second 6-month period (November-April), there is a clear decrease in the number of occurrences that NO2 
clusters identified by CLASP.  Seasonality is observed in oil and gas production emissions but is largely 
dependent on the stages of production (Dix et al., 2020). With CLASP, the seasonality of specific oil and 
gas wells can be identified and observed as well as the frequency and location of their emissions. Traditional 
averaging of the yearly six-month periods (Figure S12 in Supporting Information S1) diminished the promi-
nence of the CLASP-identified features. As a result, the determination of its importance cannot be concluded 
from the averaging results alone. With CLASP, one can now observe the seasonality of the emissions and 
know that the intermittent feature has a similar temporal frequency to a nearby known source point. Further 
analysis of this NO2 hotspot can be performed to understand its impact on regional air quality during high 
emitting periods. With CLASP's temporal clusters, irregular signals captured by satellite observations can 
be identified.

Above are a few examples of applications where CLASP can be implemented: identification of single emission 
events, plume variability, and irregular emission sources. With each example, prior spatial and temporal knowledge 
of an event is not known, yet CLASP can identify and preserve NO2 spatiotemporal variability. However, it should 
be noted that the uses of CLASP are not limited to the examples shared here. Numerous applications can be seen 
with the combined use of satellite observations of trace gases and CLASP. CLASP can be applied to large data sets 
of satellite observations and locate important features observed in a region where the air quality can then be assessed.

5. Conclusions and Future Work
This work developed a clustering algorithm, CLASP to identify and preserve gaseous variability in satellite 
observations of trace gases. The method can be automated and rooted in density-based clustering techniques 
but goes further than traditional data processing, supervised deep learning, or common clustering methods to 
adequately capture the variability of short-lived reactive gases. Long-term averaging can dampen gaseous vari-
ability unintentionally which can lead to an incomplete understanding of trace gas distribution. CLASP can 
identify and describe time-varying trace gases and sources where traditional data processing methods cannot. 
With a few inputs CLASP can reproducibly identify and describe a region's observed signals (a) spatially, 
(b) by magnitude, and (c) temporally. As an example of application, CLASP was applied to TROPOMI NO2 
observations across the state of Texas for the identification of single emission events like wildfires, plume 
variability observed with COVID-19 lockdown restrictions, and identifying irregular sources from oil and gas 
operations. Such information obtained in applications can be used to gain a better understanding of a region's 
air quality.

With the continued missions of satellite instruments detecting atmospheric composition (GOME, OMI, SCIA-
MACHY, TROPOMI) and with the recent launch of missions such as TEMPO (launch date 7 April 2023), the 
data size of satellite observations of trace gases is reaching an exponential amount. The data size of observations 
in conjunction with traditional data processing methods creates difficulties in interpretation and can hinder the 
use of such quality observations, as features may be dampened or missed. When CLASP and satellite observations 
of trace gases are combined, understanding of the spatiotemporal variability of trace gases and our atmosphere is 
increased. With the use of CLASP, the spatial and temporal information on identified features can be used in stud-
ies to better understand processes and allow for quantification using top-down methods to take place. As satellite 
observations are spatially and temporally extensive, overlooked locations, where ground-based measurements 
are lacking, can have their air quality assessed using CLASP. Further, the distribution of the pollutant burden in 
a region can be determined to where disparities can be identified with CLASP. Information obtained by CLASP 
can be used in the development of policies from decision-makers as they look to understand processes controlling 
air quality, identify long and short-term trends and emission sources, as well as understand the distribution of 
a pollutant in a region that could aid in the development of plans for mitigation strategies. Finally, CLASP can 
be employed for data sets of other trace gases (i.e., methane, sulfur dioxide, ozone, etc.) and other identification 
scenarios. CLASP has a wide range of pertinency and is not limited to the trace gas of NO2 or TROPOMI observa-
tions. With the newly launched geostationary satellite instrument over North America, TEMPO, providing hourly 
column observations of up to 2 km × 4.5 km at nadir and CLASP our understanding of trace gas variability will 
be greatly increased to where we can gain a better understanding of our atmosphere and its processes.
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